19 research outputs found

    On Buffer-Aided Multiple-Access Relay Channel

    Full text link
    The paper treats uplink scenario where M user equipments (UEs) send to a Base Station (BS), possibly via a common Relay Station (RS) that is equipped with a buffer. This is a multiple-access relay channel (MARC) aided by a buffer. We devise a protocol in which the transmission mode is selected adaptively, using the buffer at the RS in order to maximize the average system throughput. We consider the general case in which the RS and the BS can have limits on the maximal number of transmitters that can be received over the multiple access channel. In each slot there are three type possible actions: (A1) multiple UEs transmit at rates that enable BS to decode them (A2) multiple UEs transmit, the BS can only decode the messages partially, while the RS completely; (A3) RS forwards the side information to BS about the partially decoded messages, which are going to be combined and decoded entirely at the BS, while simultaneously a number of UEs sends new messages to the BS. The results show that the adaptive selection of direct and buffer-aided relay transmissions leads to significant average throughput gains.Comment: 13 pages, 3 figures, accepted to IEEE Communications letter

    Decoupled Uplink and Downlink in a Wireless System with Buffer-Aided Relaying

    Full text link
    The paper treats a multiuser relay scenario where multiple user equipments (UEs) have a two-way communication with a common Base Station (BS) in the presence of a buffer-equipped Relay Station (RS). Each of the uplink (UL) and downlink (DL) transmission can take place over a direct or over a relayed path. Traditionally, the UL and the DL path of a given two-way link are coupled, that is, either both are direct links or both are relayed links. By removing the restriction for coupling, one opens the design space for a decoupled two-way links. Following this, we devise two protocols: orthogonal decoupled UL/DL buffer-aided (ODBA) relaying protocol and non-orthogonal decoupled UL/DL buffer-aided (NODBA) relaying protocol. In NODBA, the receiver can use successive interference cancellation (SIC) to extract the desired signal from a collision between UL and DL signals. For both protocols, we characterize the transmission decision policies in terms of maximization of the average two-way sum rate of the system. The numerical results show that decoupling association and non-orthogonal radio access lead to significant throughput gains for two-way traffic.Comment: 27 pages, 10 figures, submitted to IEEE Transactions on Communication

    Ultra-Reliable Low Latency Communication (URLLC) using Interface Diversity

    Full text link
    An important ingredient of the future 5G systems will be Ultra-Reliable Low-Latency Communication (URLLC). A way to offer URLLC without intervention in the baseband/PHY layer design is to use interface diversity and integrate multiple communication interfaces, each interface based on a different technology. In this work, we propose to use coding to seamlessly distribute coded payload and redundancy data across multiple available communication interfaces. We formulate an optimization problem to find the payload allocation weights that maximize the reliability at specific target latency values. In order to estimate the performance in terms of latency and reliability of such an integrated communication system, we propose an analysis framework that combines traditional reliability models with technology-specific latency probability distributions. Our model is capable to account for failure correlation among interfaces/technologies. By considering different scenarios, we find that optimized strategies can in some cases significantly outperform strategies based on kk-out-of-nn erasure codes, where the latter do not account for the characteristics of the different interfaces. The model has been validated through simulation and is supported by experimental results.Comment: Accepted for IEEE Transactions on Communication

    Adaptive link selection and power allocation buffer-Aided relay networks with multiple sources

    No full text

    Optimized Interface Diversity for Ultra-Reliable Low Latency Communication (URLLC)

    No full text
    An important ingredient of the future 5G systems will be Ultra-Reliable Low-Latency Communication (URLLC). A way to offer URLLC without intervention in the baseband/PHY layer design is to use \emph{interface diversity} and integrate multiple communication interfaces, each interface based on a different technology. Our approach is to use coding to seamlessly distribute coded payload and redundancy data across multiple available communication interfaces. We formulate an optimization problem to find the payload allocation weights that maximize the reliability at specific target latency values. By considering different scenarios, we find that optimized strategies can significantly outperform kk-out-of-nn strategies, where the latter do not account for the characteristics of the different interfaces. Our approach is supported by experimental results.Comment: Presented in Globecom'1

    Ultra-reliable low latency communication using interface diversity

    No full text

    On Buffer-Aided Multiple-Access Relay Channel

    No full text

    Backscattering Estimation of a Tilted Spherical Cap for Different Kinds of Optical Scattering

    No full text
    In many optical engineering applications, a spherical cap shaped optical element is widely used such as concave or convex mirrors in reflective optics. Such an element can also tilt around the vertex which corresponds to an off-axis optical design. The optical backscattering of such an optical element sometimes could be important. For example, in the space-based gravitational wave detection, the backscattering of such an element could be superimposed with the local oscillator and limits the sensitivity of the spacecraft. The scattered contributions depend on the scattering property of the mirror surfaces and the geometrical arrangement including the radius of curvature, the tilt and the interval between the scattering source and detector plane. Based on random estimation method, this paper starts from the radiometry, combines these variables and calculates the theoretical amount of back scattered light for both diffuse and superpolished surfaces. The results are compared with analytical and ray tracing solution. The conclusions can be used to further improve the optical design of the telescope or extended to other cases where the backscattered light should be controlled

    Backscattering Estimation of a Tilted Spherical Cap for Different Kinds of Optical Scattering

    No full text
    In many optical engineering applications, a spherical cap shaped optical element is widely used such as concave or convex mirrors in reflective optics. Such an element can also tilt around the vertex which corresponds to an off-axis optical design. The optical backscattering of such an optical element sometimes could be important. For example, in the space-based gravitational wave detection, the backscattering of such an element could be superimposed with the local oscillator and limits the sensitivity of the spacecraft. The scattered contributions depend on the scattering property of the mirror surfaces and the geometrical arrangement including the radius of curvature, the tilt and the interval between the scattering source and detector plane. Based on random estimation method, this paper starts from the radiometry, combines these variables and calculates the theoretical amount of back scattered light for both diffuse and superpolished surfaces. The results are compared with analytical and ray tracing solution. The conclusions can be used to further improve the optical design of the telescope or extended to other cases where the backscattered light should be controlled

    Shizukaol D inhibits lipid accumulation in HepG2 cells in an AMPK-dependent manner.

    No full text
    <p>HepG2 cells were transfected with AMPK siRNA or a control siRNA for 24 h followed by incubation with 2 µM shizukaol D or 2 mM metformin for an additional 24 h. AMPK and ACC phosphorylation was analyzed by western blotting (A), and the triglyceride content (B) and cholesterol content (C) were measured (n = 3). (D) The cells were pretreated with 20 µM compound C (an AMPK inhibitor) followed by treatment with 2 µM shizukaol D. AMPK and ACC phosphorylation was analyzed by western blotting (D), and the triglyceride content (E) and cholesterol content (F) were measured (n = 3). Statistical analysis was performed using two-way ANOVA followed by Tukey’ post-hoc test *, p<0.05; **, p<0.01.</p
    corecore